, the #1 open access web portal for PhD theses...

Why PhD theses...

PhD thesis is the result of years of hard work.

keyword researchMeasured by download count PhD theses are one of the most popular items world wide on open access repositories. But unless a thesis is published, it is very difficult for other researchers to find out about it and get access to it. Theses are often under-used by other researchers. attempts to address this issue by making it easy to identify and locate copies of many theses in various disciplines.

Re-evaluation of reflection seismology for archaeological investigation

Re-evaluation of reflection seismology for archaeological investigation


Department of Anthropology, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.


During the last decade, archaeologists have widely accepted the use of geophysical exploration techniques, including magnetic, resistivity and electromagnetic methods, for pre-excavation site assessment. Although researchers were quick to recognize the potential of seismic techniques to provide cross-sectional images of the subsurface, early feasibility studies concluded that seismic methods were inappropriate due to restricted resolving power and the relatively small-scale nature of archaeological features. Unfortunately, this self-fulfilling prophesy endures and has largely discouraged subsequent attempts to exploit seismic methods for archaeological reconnaissance. Meanwhile, however, seismic technology has been revolutionized in connection with engineering, groundwater and environmental applications. Attention to detail in developing both instrumentation and data acquisition techniques has yielded a many-fold improvement in seismic resolving power. In light of these advances, this dissertation re-examines the potential of reflection seismology for archaeological remote sensing.

It is not the objective of this dissertation to deliver an unequivocal pronouncement on the ultimate utility of reflection seismology for the investigation of archaeological sites. Rather, the goal has been to establish a sound theoretical foundation for objective evaluation of the method's potential and future development. In particular, a thorough theoretical analysis of seismic detection and resolution yields practical performance and identifies frequency response characteristics associated with optimum resolution. Findings have guided subsequent adaptation, development and integration of seismic instrumentation, resulting in a prototype system for high-resolution seismic imaging of the shallow subsurface.

Finally, to assess system performance and the suitability of optimum offset data acquisition techniques, a full-scale subsurface model has been constructed, allowing direct comparison between experimental soundings and known subsurface structure. Results demonstrate the potential of reflection seismology to resolve near-surface features on the scale of archaeological interest. Moreover, despite conventional wisdom that the ground penetrating radar method possesses vastly superior resolving power, acquisition of coincident radar soundings demonstrates that the two techniques provide comparable resolution.